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ABSTRACT  

The world of vehicle design is a fast-paced iterative environment that demands efficiency in the simulation of 
suspension loads.  Toward that end, a computationally efficient, linear, planar, quasi-static tire model is developed in 

this work that accurately predicts a tire’s lower-frequency, reasonably large amplitude, nonlinear stiffness relationship.  
Hamilton’s principle is used to derive the axisymmetric and circumferentially isotropic stiffness equation which is 

discretized into segments to create the tire stiffness model.  The model is parameterized by a single stiffness parameter 
and two shape parameters such that the tire’s deformed shape is completely independent of the overall tire stiffness 
and the forces acting on the tire.  Constraint modes are developed that capture the tire enveloping and bridging 

properties via component mode synthesis originated by Hurty and Gladwell and the Guyan static reduction method 
decouples active constraints from the stiffness matrix formulation.  A recursive method is developed to deduce the set 
of active constraints at the tire-road interface.  The model captures the nonlinear stiffness of a real tire by enforcing 

the unidirectional geometric boundary conditions during the recursive method.  The model parameters are identified 
via two quasi-static experiments: a flat-plate and a cleat test.  The simulated vertical loads are within 4% of the 

experimental load throughout a reasonably large range of travel for the flat-plate test and within 7% of the experimental 
loads for the cleat test.  The simulation produces nonlinear stiffness when simulating a flat plate test and a 
discontinuous stiffness when simulating a cleat test.  This model strikes a balance between simple tire models that 

lack the fidelity to make accurate chassis load predictions and computationally intensive models that cannot provide 
timely predictions.  It is expected that this tire model is used as an integral part of computationally efficient  and 
accurate vehicle simulations that are critical throughout the fast-paced iterative design process. 
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the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do 
not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising 

or product endorsement purposes. 

NOMENCLATURE 

N Total number of tire segments 

𝒖 Set of radial deflections 

𝑅  Tire radius 

Fn Radial force acting on n
th
 tire segment 

Fa Set of active radial tire force 
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F Vertical spindle force 

f  Linearly distributed load density 

𝜅  Radial stiffness density 

𝐸 Elastic modulus 

𝐼  Second moment of inertia 

𝐺  Shear modulus 

A Cross-sectional area 

𝑈𝑏 Distributed bending potential energy 

𝑈𝑠 Distributed shear potential energy 

𝑈𝑟  Distributed radial elastic potential energy 

𝑈𝑤 Distributed external work 

𝛾𝑏 Distributed bending stiffness 

𝛾𝑠 Distributed shear stiffness 

𝛾𝑟 Distributed radial stiffness 

𝑘0 Model stiffness parameter 

𝛼1,𝛼2  Model shape parameters 

INTRODUCTION 

With the advent of autonomous vehicles and the simultaneous pressure to improve energy efficiency, there are ever 

increasing demands on vehicle engineers.  In particular, chassis engineers are faced with numerous design challenges 

(weight, cost, ride, handling, noise, reliability, packaging…) while interacting with several influential groups 
(scientific labs, proving ground, suppliers, safety, manufacturing, powertrain, body… ) that result in a highly iterative 
design process.  All these challenges and groups must be satisfied, to the best of the engineer’s ability, within a very 

short timeframe.  This fast-paced iterative design environment demands efficiency.  Yet some fundamental physical 
truths remain within this cacophony of ever-changing requirements, influential groups, and deadlines.  For example, 

regardless of how the power is developed, or how the wheels are steered, all the vehicle forces must ultimately be 
reacted through the vehicle suspension and tires. 

The goal then, is to create a highly efficient model that captures the fundamental physical properties of tires from 

which simulation results are used to make informed design decisions.  High fidelity, but computationally intensive 

models that provide very accurate information after the parts have been released for production are of no use.  
Simulation results arising from overly simplified models that lack the fidelity to make accurate chassis load predictions 
cannot be trusted and have little value.  The objective of this work is to develop a computationally efficient, planar 

tire model that accurately predicts the lower-frequency, but not necessarily low amplitude, tire shape.  Higher-
frequency dynamics such as those that would be required for noise predictions are outside the scope of this work.  The 
emphasis is intentionally placed on the shape of the deformed tire in the region of the contact patch, which must be 

capable of representing the bridging property (over narrow cracks) and enveloping property (over sharp bumps).  The 
scope includes relatively large deformations, approaching, but not including, the point of rim strike.  Although the 
relationship between the radial deformation and radial load is developed as a linear quasi-static model, the nonlinear 

stiffness relationship between the vertical spindle load and the vertical tire deflection that exists in real tires is captured 
by the model via the unidirectional geometric boundary condition at the tire-road interface.  Six physical tire properties 

(radius, bending stiffness…) are reduced in the development of this model to a single stiffness parameter and two 
shape parameters.  Experimental data are used to validate the approach using two quasi-static tests, a flat plate and a 
cleat test, with relatively large deformations.   

The remainder of this work is developed as follows.  Some background on finite element and finite difference tire 

modeling and the use of constraint modes in tire modeling is briefly reviewed.  The mathematical derivation of the 
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parameterization of the stiffness matrix is developed followed by the development of the constraint mode model for 
this work.  A recursive process to determine the proper tire shape is developed followed by validation with quasi-

static experimental results.  The resulting model is capable of bridging and enveloping irregularities in the road surface, 
generating the correct tire shape over irregular surfaces, and capturing the nonlinear stiffness relationship produced 
by physical tires. 

BACKGROUND 

One long-standing hurdle to accurately predicting responses (forces, torques, and accelerations) at the tire spindle is 

the development of high fidelity tire models.  A considerable amount of tire modeling research has been conducted 
and a comprehensive review of the current state of the art is presented by Willumeit and Boehm [1] and more recently 
by Umsrithong [2].  Although a complete review of recent developments is not presented herein, the results from 

several of these works have direct relevance to the objectives of this study.   

Researchers using Finite Element (FE) models have demonstrated that spindle responses can be predicted accurately, 

but may be computationally intensive and require a great number of physical parameters that are difficult or costly to 
obtain.  Mousseau and Hulbert [3] and Darnell, Hulbert, and Mousseau [4] developed a 3-D tire model using an FE 

model for the tread and a lookup table for the sidewall membrane elements.  Hanley, Crolla, and Hauke [5], used a 1-
D FE model for tires traversing large obstacles; a more computationally efficient means to simulate relatively large 
deflections is pursued in the present study.  Burke and Olatunbosun [6] used an FE model and a contact patch 

description to predict vertical force and displacement.  Presently a more formal approach to defining the contact patch 
is developed through the definition of the active constraints between the tire and road surfaces.  The current state of 

FE modeling work is presented by Ragheb, El-Gindy, and Kishawy [7] wherein Mooney-Rivlin material properties 
were used to create detailed FE models of the tread and tire.  Their quasi-static flat-plate test results are used as a 
baseline to validate the capability of the work developed in the present study. 

Other researchers have developed ring models of tires using finite differences.  Van Oosten and Jansen [8] used a rigid 

ring to calculate belt vibrations while the deformed shape of the tire (including bridging and enveloping) was 
accurately predicted by Zegelaar and Pacejka by using a flexible ring to simulate the quasi-static response of a tire 
rolling over an uneven surface [9].  Although the simulation results agreed with the experimental data, the model is 

computationally intensive and requires comprehensive physical testing to define the parameters.  A similar approach 
was developed by Loo, who modeled the tire by using a more complex flexible circular ring under tension with a nest 
of linear springs and dampers arranged radially [10].  However in Loo’s study the ring tension and foundation stiffness 

requires additional contact patch measurements and the parameters were experimentally identified using multiple 
single-point load tests.  Badalamenti et al. showed that a radial spring tire model, in which the radial spring element 

deflection depends on the adjacent element deflections, could accurately describe the tire enveloping behavior in an 
efficient model [11].  Presently, a planar ring model with an elastic foundation that includes shear and bending stiffness 
in ring is developed to accurately and efficiently describe the tire enveloping behavior. 

It is assumed in this work that the low-frequency deformation of the tire shape can be adequately defined by the quasi-

static constraint modes.  This assumption is given credence by Gillespie’s study in which a radial spring model is used 
to simulate the stiffness variation circumferentially and the magnitude of the radial force variation is found to be 
relatively independent of speed [12].  Similarly, Takayama et al. developed a model to predict the transient response 

of a tire encountering a cleat, where the belt and tread region is modeled by a rigid ring and deflections from the cleat 
are absorbed by a linear and planar spring attached to the rigid ring [13]. 

Ferris suggests that a static constraint mode tire model can be used to capture the tire enveloping and bridging 

properties with an axisymmetric and circumferentially isotropic model [14].  This reduced representation of the tire 

model is founded on the seminal component mode synthesis work originated by Hurty [15] and Gladwell [16].  
Presently, in Equations (15)-(18), the order of the stiffness matrix is reduced via a Guyan static reduction [17].  This 
constraint mode tire model was expanded by Ma to include shear effects in the derivation and to reduce the required 

number of parameters from five dependent parameters to two parameters that define the constraint modes (the shape) 
and an independent parameter that defines the overall tire stiffness [18].  Presently, these concepts are combined to 

develop a complete formulation of the planar constraint mode tire model. 
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MODEL DEVELOPMENT 

Consider the tire to be a ring that is inextensible in total circumference, but radially flexible, and supported by an 

elastic foundation parameterized by the radial stiffness, , as shown in Figure 1a.  The assumed axisymmetric, planar, 

and circumferentially isotropic tire is divided into N segments.  Each segment is modeled as an Euler elastic beam of 

length 2R/N and notional cross-sectional area, A, shown as a shaded region in Figure 1b (the model itself is planar).  
The vector {u} defines the radial deflection of all tire segments and the quasi-static constraint modes are developed 

from the stiffness relationship given in Equation (1). 

 

Figure 1. Schematics of (a) flexible ring with radial stiffness and (b) single tire segment  

 

 [𝑲]{𝒖}= {𝑭} (1) 

Note that this derivation includes relatively large deformations, approaching, but not including, the point of rim strike 

(when the tire sidewall is folded such that the upper portion is in direct contact with the lower portion and there is a 
discontinuous and dramatic increase in apparent stiffness).  That is, the radial stiffness of each segment is assumed to 
be linear.  Next the stiffness matrix [K] is developed, followed by a reduced order parameterization of the matrix using 

one stiffness and two shape parameters.   

Derivation of the Stiffness Matrix 

The quasi-static equation resulting from the application of Hamilton’s principle for the distribution of energy and work 

throughout the tire is written as Equation (2). 

 
∫ (𝛿𝑈𝑏 − 𝛿𝑈𝑠 − 𝛿𝑈𝑟 + 𝛿𝑈𝑤)𝑑𝑡

𝑡2

𝑡1

= 0               ∀𝑡1,𝑡2 
(2) 

The virtual changes are computed as  Equations (3) - (6), where spatial derivatives are represented by the commonly 

used prime notation (e.g., first spatial derivative of radial displacement is u’) 

 𝛿𝑈𝑏 = 𝐸𝐼𝑢′′′′𝛿𝑢 (3) 

 𝛿𝑈𝑠 = 𝐺𝐴𝑢′′𝛿𝑢 (4) 

 𝛿𝑈𝑟 = 𝜅𝑢𝛿𝑢 (5) 

 𝛿𝑈𝑤 = 𝑓𝛿𝑢 (6) 

Continuity is enforced through the boundary conditions on the radial deformations and their spatial derivatives as 

given in Equation (7). 

 𝑢|𝑥 = 𝑢|𝑥+2𝜋𝑅 ,  𝑢′|𝑥 = 𝑢′|𝑥+2𝜋𝑅 ,  𝑢′′|𝑥 = 𝑢′′|𝑥+2𝜋𝑅,  𝑢′′′|𝑥 = 𝑢′′′|𝑥+2𝜋𝑅 (7) 

The stiffness equation for each segment is then simplified to Equation (8).  

 𝐸𝐼𝑢′′′′ + 𝐺𝐴𝑢′′ + 𝜅𝑢 = 𝑓 (8) 

To reduce the required notation, the six physical properties (E, I, G, A, , and R) are grouped into three tire stiffness 

parameters (𝛾𝑏, 𝛾𝑠and 𝛾𝑟) as defined in Table 1.  The tire stiffness parameters are invariant for a specific tire and 
positive valued for all tires.  Most notably the tire stiffness parameters are not a function of the discretization process.   
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Table 1. Tire stiffness parameters and discretized radial force 

𝛾𝑏 = 𝐸𝐼(2𝜋𝑅)−3    Distributed bending stiffness 

𝛾𝑠 = 𝐺𝐴(2𝜋𝑅)−1 Distributed shear stiffness 

𝛾𝑟 = 𝜅(2𝜋𝑅) Distributed radial stiffness 

  𝐹𝑛 =
𝑓

𝑁
(2𝜋𝑅) 

Radial force on n
th
 tire segment 

The stiffness equation for each segment is then rewritten as Equation (9).  

 𝛾𝑏(2𝜋𝑅)3𝑢′′′′ + 𝛾𝑠(2𝜋𝑅)𝑢′′ + 𝛾𝑟(2𝜋𝑅)−1𝑢 = 𝑓 (9) 

Defining Stiffness and Shape Parameters 

Next the model is discretized into N equal segments via a finite difference method.  The fourth spatial derivative of 

the radial displacement for the n
th
 tire segment is approximated by Equation (10); the second spatial derivative is found 

in a similar manner.    

 
𝑢𝑛

′′′′ ≃
𝑢𝑛−2− 4𝑢𝑛−1+ 6𝑢𝑛 − 4𝑢𝑛+1+ 𝑢𝑛+2

(
2𝜋𝑅
𝑁

)
4  

(10) 

A second set of parameters is introduced to simplify the subsequent analysis, beginning with discretizing the 
continuous stiffness equation given in Equation (9).  The discrete stiffness equation for the n

th
 tire segment is expressed 

as Equation (11), where the radial force on the n
th
 tire segment, Fn, is defined in Table 1. 

 𝑘0𝛼2𝑢𝑛−2+ 𝑘0𝛼1𝑢𝑛−1+ 𝑘0𝑢𝑛 + 𝑘0𝛼1𝑢𝑛+1+ 𝑘0𝛼2𝑢𝑛+2 = 𝐹𝑛 (11) 

The model stiffness (k0) and shape parameters (1 and 2) are defined in terms of the tire stiffness parameters of Table 

1.  For convenience, the conversion between sets of parameters is defined by a pair of transformation matrices given 
in Equation (12) and Equation (13).   

 

[

𝛾1

𝛾2

𝛾3

] =

[
 
 
 
 0 0

1

𝑁3

0
1

𝑁

4

𝑁
𝑁 2𝑁 2𝑁]

 
 
 
 

[
𝑘0

𝑘0𝛼1

𝑘0𝛼2

] (12) 

 

[
𝑘0

𝑘0𝛼1

𝑘0𝛼2

]= [
6𝑁3 −2𝑁

1

𝑁
−4𝑁3 𝑁 0
𝑁3 0 0

][

𝛾1

𝛾2

𝛾3

] (13) 

The usefulness of the tire stiffness parameters, {}, is that they are convenient to describe the distributed stiffness 
equation, Equation (9), and they are not affected by the number of tire segments chosen to discretize the system.  The 

model stiffness and shape parameters (k0, 1, 2), by contrast, are convenient for the discretized stiffness equation, 
Equation (11), with which the reminder of this work is concerned.  Consider a typical modeling exercise in which the 
number of segments is to be increased.  Once the model stiffness and shape parameters are identified for a model with 

the original number of segments, the corresponding invariant tire stiffness parameters, {}, can be calculated using 
Equation (12).  If a new number of segments is desired, the corresponding values for the new model stiffness and 
shape parameters is calculated using Equation (13) and the invariant tire stiffness parameters. 

Parameterized Stiffness Matrix 

The symmetry of a physical tire, enforced by Equation (7), results in a circulant Toeplitz stiffness matrix [𝑲], as shown 
in Equation (14), that comprises two parts: the single parameter 𝑘0 defines the model stiffness and the model shape 
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matrix [𝜶] (defined by the two model shape parameters 1 and 2) that defines the relative deformations of the tire 
when acted upon by geometric constraints. 

 

[𝑲] = 𝑘0

[
 
 
 
 
 
1 𝛼1 𝛼2 0 ⋯ 𝛼2 𝛼1

𝛼1 1 𝛼1 𝛼2 ⋯ 0 𝛼2

𝛼2 𝛼1 1 𝛼1 ⋮ 0 0
0 𝛼2 𝛼1 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛼1 𝛼2 0 0 ⋯ 𝛼1 1 ]

 
 
 
 
 

= 𝑘0[𝜶] (14) 

DEVELOPMENT OF CONSTRAINT MODES 

The Guyan static reduction method [17] is used to reduce the order of the stiffness matrix in Equations (15)-(18) by 

imposing geometric boundary constraints on the active degrees of freedom.  The degrees of freedom, defined as the 
radial deformations of the tire {u}, are categorized into active and omitted sets, represented by superscripts ‘a’ and ‘o’ 

respectively.  In general, the geometric boundary constraints must be a subset of the active degrees of freedom.  In the 
tire modeling case with which this work is concerned, the active constraints are exclusively comprised of those degrees 
of freedom in contact with the road surface.  The degrees of freedom are reordered and written as vector {𝒖̂} such that 

the active degrees of freedom occupy the first positions in the vector, followed by the omitted degrees of freedom, via 

an orthogonal sorting matrix, S, as shown in Equation (15). 

 {𝒖} = [[𝑺𝒂 ] [𝑺𝒐]]{
{𝒖̂𝒂}
{𝒖̂𝒐}

}= [𝑺]{𝒖̂},    {𝒖̂}= [𝑺]𝑻{𝒖} (15) 

The stiffness matrix and the force vector must be similarly reordered as given in Equation (16). 

 [𝑲̂] = [𝑺]𝑻[𝑲][𝑺],    {𝑭̂}= [𝑺]𝑻{𝑭} (16) 

The reordered stiffness equation is then partitioned according to the active and omitted degrees of freedom as given 

in Equation (17). 

 
[𝑲̂]{𝒖̂}= [

[𝑲̂𝒂𝒂] [𝑲̂𝒂𝒐]

[𝑲̂𝒐𝒂] [𝑲̂𝒐𝒐]
]{

{𝒖̂𝒂}
{𝒖̂𝒐}

}= {{𝑭̂
𝒂
}

{𝟎}
} = {𝑭̂} (17) 

Given a set of active constraints, {𝒖̂𝒂}, the omitted constraint vector {𝒖̂𝒐} is written as Equation (18).  The constraint 
mode for this particular set of active constraints is written as Equation (20).   

 {𝒖̂𝒐} = −[𝑲̂𝒐𝒐]
−1

[𝑲̂𝒐𝒂]{𝒖̂𝒂} (18) 

In this work, the stiffness matrix is defined in terms of an overall stiffness parameter and two shape parameters, as 
developed in Equation (14).  The reordered stiffness submatrices are then given by Equation (19) as 

 [𝑲̂𝒐𝒐] = [𝑺𝒐]𝑻 (𝑘0[𝜶])[𝑺𝒐] and [𝑲̂𝒐𝒂] = [𝑺𝒐]𝑻 (𝑘0[𝜶])[𝑺𝒂] (19) 

The omitted constraint vector becomes solely dependent on the shape parameters and the active constraint vector, as 

developed in Equation (20). 

 {𝒖̂𝒐} = −([𝑺𝒐]𝑻[𝜶][𝑺𝒐])−𝟏([𝑺𝒐]𝑻[𝜶][𝑺𝒂]){𝒖̂𝒂} (20) 

Finally, the complete displacement vector is written as a function of the active constraint vector in Equation (21). 

 {𝒖} = [[𝑺𝒂]− [𝑺𝒐]([𝑺𝒐]𝑻[𝜶][𝑺𝒐])−𝟏([𝑺𝒐]𝑻[𝜶][𝑺𝒂])]{𝒖̂𝒂}   (21) 

Note that this mode shape is completely independent of the overall tire stiffness and the forces acting on the tire.  

Rather, the shape is purely a function of the geometric boundary conditions (captured by the active constraint vector, 
{𝒖̂𝒂}, and the corresponding orthogonal sorting matrix, [𝑺]) and the two shape parameters 1 and 2.  The issue then, 
is to deduce the active constraints. 
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Deducing Active Constraints 

Whether a new active constraint must be added and, if so, which active constraint must be added is based on the 

impingement of the road surface on the tire surface.  It is tempting to simply compare the relative positions of the 

undeformed shape of the tire and the road surface and sort the points by the magnitude of impingement.  However, 
one point along the road surface may impinge farther into the undeformed tire’s periphery than another, yet the former 
point may not be an active constraint while the later point is.  This is demonstrated by the example in Figure 2.  The 

undeformed tire (shown as a dashed line in Figure 2a) is impinged upon by three distinct points along the road surface 
(shown as a solid line).  The points are labeled in Figure 2b according to their magnitude of impingement, from most 
to least, as A, B, and C.  Although the impingement by point B is greater than that of point C, it should not be identified 

as an active constraint lest the unidirectional boundary condition be violated and the road is presumed to “pull” the 
tire down.  In this way the process cannot be based on a Lagrangian formulation, since that assumes some a priori 

knowledge of which degrees of freedom are active, and thus motivates the development of a recursive process for 
adding active constraints. 

 

Figure 2. Deducing Active Constraints  

Although the recursive process to identify the active constraints at the tire-road interface developed in this study is 
applicable to a wide range of tire models, including FE models and ring models, it is described herein for the tire 

model defined by Equation (20), and shown schematically in Figure 1.  The first trial constraint mode is the 
undeformed shape of the tire (a circle, partly shown as a dashed line in Figure 3a), located at a prescribed vertical 

position above the road surface.  The recursive process continues through steps a through e as follows: 
a. Identify the set of degrees of freedom where the road surface impinges on the current trial constraint 

mode.  

b. Sort the degrees of freedom with respect to the magnitude of impingement. 
c. End the iteration process if no significant impingement exists. 
d. Augment the current set of active degrees of freedom with the degree of freedom that has the 

greatest impingement (and those that impinge within some very small tolerance of that greatest 
impingement, if applicable).   

e. Develop a new trial constraint mode based on this augmented set of active constraints. 

For clarity, the set of active constraints at the tire-road interface is developed through a typical example.  Consider a 

tire on a flat plate as shown in Figure 3 where the road, undeformed shape of the tire, and the deformed shape (the 
trial constraint mode) are shown as a solid, dashed, and dotted line respectively.  The undeformed tire is the first trial 

constraint mode, shown in Figure 3a.  The tire segment with the largest impingement is directly below the tire center 
and becomes the first active degree of freedom.  Figure 3b shows the second trial constraint mode and the first active 
degree of freedom is shown as a single small circle.  Figure 3c shows that two degrees of freedom have the same 

impingement (due to symmetry) and both are added to the set of active constraints and a new trial constraint mode is 
calculated.  This process ends with Figure 3d when no significant impingement remains.  

 

Figure 3. Recursive process to identify active constraints  

Nonlinearity from Unidirectional Geometric Boundary Condition 

It is clear that the stiffness equation, developed as Equation (8) for the continuous case and Equation (11) for the 

discrete case, are linear and time invariant as are the physical properties shown in Table 1.  However real tires exhibit 
a nonlinear vertical force-deflection behavior that must be captured.  The unidirectional geometric boundary 

conditions provide the mechanism by which this non-linear stiffness relationship is manifest.  As the tire deflection 
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increases, more tire segments come into contact with the road surface and become active constraints as shown in 
Figure 4.  As the tire first touches the road surface, only two segments are active and produce forces, shown as arrows 

in Figure 4a.  As the deflection increases, the magnitude of the forces at the existing active constraints increases and 
additional degrees of freedom become active, as shown by the four arrows in Figure 4b.  This addition of new 
constraints and the increase force magnitude continues with increased deflection (shown in Figure 4c). 

 

Figure 4. Additional radial forces added as deflection increases  

EXPERIMENTAL VALIDATION 

The experimental data used to validate this work is provided by Professor Schalk Els of the University of Pretoria, 

South Africa.  The tire used is a Continental Conti-Trac AT 238/85 R16.  Two quasi-static tests (a flat plate test and a 
cleat test) are performed that produce a resultant spindle force, F, with respect to the tire deflection, e, as shown in 

Figure 5a for the flat plate test and Figure 5b for the cleat test.  The side length of the square cleat is 19 mm.  In both 
cases an obstruction (plate or cleat) is gradually pressed toward the center of a tire that is rigidly fixed at the spindle.  

The model stiffness, k 0, and model shape parameters, 1 and 2, are identified using these two quasi-static tests.  The 

flat plate test results are compared to the results from Ragheb, El-Gindy, and Kishawy [7].  The results of these two 
tests are shown in Figure 6 and Figure 7; in both figures the experimental results are shown as a solid line while the 

simulation results are shown as a dashed line. 

  

a. Flat Plate b. Cleat 
 

Figure 5. Schematics for Test Procedures  

Validation via Flat Plate Testing 

It is clear from Figure 6 that the nonlinear stiffening characteristic of the tire is captured by the constraint mode tire 

model via the unidirectional geometric boundary condition (see also Figure 4).  The model parameters were optimized 
to minimize the maximum error, in this case 4%, throughout a reasonably large range of travel.  For comparison 

purposes, Ragheb, El-Gindy, and Kishawy [7] used Mooney-Rivlin material properties to create detailed FE models 
of the tread and sidewall for a tire similar to the Michelin Off-road 12.00R20 XML TL 149J (a somewhat larger tire 

than that used in the present study).  The FE model produced quasi-static flat-plate test results that were within 10-
15% of the experimental results (depending on tire pressure).  Also of note is that the nonlinearity in their simulation 
was negligible whereas the current study produces results that are clearly, though not dramatically, nonlinear.    
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Figure 6: Flat-plate experimental and simulated force, F, with respect to the deflection, e 

In this example, the shear and radial stiffnesses are orders of magnitude smaller than the bending stiffness.  To simplify 

future comparisons to these results, the model shape and stiffness parameters and tire stiffness parameters provided in 

Table 2 may be used. 

Table 2. Simplified tire stiffness parameters and modeling parameters 

Modeling 

Parameters (N=72) 

Tire Stiffness Parameters 

𝒌𝟎 = 𝟕.𝟎𝟓𝟑 × 𝟏𝟎𝟔 𝛾1 = 3.15 

𝜶𝟏 = −𝟐/𝟑 𝛾2 = 0 

𝜶𝟐 = 𝟏/𝟔 𝛾3 = 0 
 

Validation via Cleat Testing 

The cleat test simulation results shown in Figure 7 show very good agreement throughout the range of deflection; the 

maximum error is 7%.  The nonlinear stiffness property, in the form of a discontinuity, is clearly captured in this 
modeling technique.  The discontinuity in stiffness occurs when the experimental deflection exceeds approximately 

5cm, dividing the results into two regions.  In the lower region the tire is suspended by the cleat and the contact area 
is constrained to the cleat surface only.  In this lower region the stiffness is quite linear in both the experimental results 
and the simulated results.  This is  expected because there are no additional unidirectional boundary constraints added 

as the deflection increases in this lower region.  There is a dramatic change in the stiffness as deflection increases to 
the point where the tire tread touches the surface below the cleat as shown in the lower inset picture in Figure 7.  Note 

that this discontinuity in stiffness is captured by the constraint mode tire model even though a simple linear model is 
used to predict the radial deflection of the tire surface. 
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Figure 7: Cleat experimental and simulated force, F, with respect to the deflection, e 

DISCUSSION 

It is envisioned that the constraint mode tire model developed in this work can serve as a morphological filter.  That 

is, this constraint mode tire model can be used to pre-filter the surface once, providing the required bridging and 
enveloping properties of the tire.  A simpler tire model (perhaps a simple linear point-follower) could be used in the 

iterative design process to provide fast yet reliable spindle force predictions for vehicle dynamic simulation and 
reliability evaluation.  Specifically, an effective road profile could be estimated given an actual profile by simulating 
the constraint mode tire model traveling over an actual profile given a constant spindle load.  It is hoped that a small 

sacrifice in accuracy will result in an order of magnitude increase in computational speed.  Preliminary results shown 
in Figure 8 where the actual profile is shown as a solid grey line and the effective road profile is shown as a dashed 
black line.  In this example both the bridging and enveoloping proerties are evident (including the bridging of deep 
narrow cracks) which is encouraging for further study. 

 

Figure 8: Potential use as Morphological Pre-Filter 

CONCLUSIONS  

The main contribution of this work is the development of a computationally efficient, linear, planar, quasi-static tire 
model that accurately predicts a tire’s lower-frequency, reasonably large amplitude, nonlinear stiffness relationship.  
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One major development is that the model is parameterized by a single stiffness parameter and two shape parameters.  
The implication of this development is that the tire’s deformed shape is completely independent of the overall tire 

stiffness and the forces acting on the tire.  Rather, the shape is purely a function of the geometric boundary conditions 

and the two shape parameters 1 and 2.  This simple model produces nonlinear stiffness when simulating a flat plate 
test and a discontinuous stiffness when simulating a cleat test, in both cases producing reasonable force predictions.  

The nonlinear behavior stems from the unidirectional geometric boundary conditions that are preserved during the 
recursive method developed to deduce the active constraints.  A simple example demonstrates that simpler algorithms 

that do not use this new recursive method can erroneously define non-active constraints to be active.  This may produce 
the effect of the road surface “pulling” the tire down.  This model strikes a balance between heuristic tire models (such 
as a linear point-follower) that lack the fidelity to make accurate chassis load predictions and computationally intensive 

models that cannot provide timely predictions.  It is hoped that this tire model is used as an int egral part of 
computationally efficient and accurate vehicle dynamic simulations that are critical throughout the iterative design 
process. 
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